Effectiveness of monoenergetic and spread-out bragg peak carbon-ions for inactivation of various normal and tumour human cell lines.

نویسندگان

  • Mauro Belli
  • Daniela Bettega
  • Paola Calzolari
  • Roberto Cherubini
  • Giacomo Cuttone
  • Marco Durante
  • Giuseppe Esposito
  • Yoshiya Furusawa
  • Silvia Gerardi
  • Giancarlo Gialanella
  • Gianfranco Grossi
  • Lorenzo Manti
  • Renato Marchesini
  • Mariagabriella Pugliese
  • Paola Scampoli
  • Giustina Simone
  • Eugenio Sorrentino
  • Maria Antonella Tabocchini
  • Lucia Tallone
چکیده

This work aimed at measuring cell-killing effectiveness of monoenergetic and Spread-Out Bragg Peak (SOBP) carbon-ion beams in normal and tumour cells with different radiation sensitivity. Clonogenic survival was assayed in normal and tumour human cell lines exhibiting different radiosensitivity to X- or gamma-rays following exposure to monoenergetic carbon-ion beams (incident LET 13-303 keV/microm) and at various positions along the ionization curve of a therapeutic carbon-ion beam, corresponding to three dose-averaged LET (LET(d)) values (40, 50 and 75 keV/microm). Chinese hamster V79 cells were also used. Carbon-ion effectiveness for cell inactivation generally increased with LET for monoenergetic beams, with the largest gain in cell-killing obtained in the cells most radioresistant to X- or gamma-rays. Such an increased effectiveness in cells less responsive to low LET radiation was found also for SOBP irradiation, but the latter was less effective compared with monoenergetic ion beams of the same LET. Our data show the superior effectiveness for cell-killing exhibited by carbon-ion beams compared to lower LET radiation, particularly in tumour cells radioresistant to X- or gamma-rays, hence the advantage of using such beams in radiotherapy. The observed lower effectiveness of SOBP irradiation compared to monoenergetic carbon beam irradiation argues against the radiobiological equivalence between dose-averaged LET in a point in the SOBP and the corresponding monoenergetic beams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo computation of dose deposited by carbon ions in radiation therapy

Background: High-velocity carbon ion beams represent the most advanced tool for radiotherapy of deep-seated tumors. Currently, the superiority of carbon ion therapy is more prominent on lung cancer or hepatomas. Materials and Methods: The data for lateral straggling and projected range of monoenergetic 290 MeV/u (3.48 GeV) carbon ions in muscle tissue were obtained from the stopping and range o...

متن کامل

بررسی اثر تغییر انرژی بر توزیع عمق-دوز در پروتون درمانی تومور چشمی با استفاده از کد MCNPX

Introduction: Depth-dose distribution curve of protons in the matter has a maximum is called Bragg peak. Bragg peak of a monoenergetic proton beam is too narrow. The spread out Bragg peak should be created for full coverage of the tumor. The spread out Bragg peak is obtained in the depth of the tumor with superposition of the several Bragg peaks. The aim of this study was coverage of an eye tum...

متن کامل

Evaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line

In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...

متن کامل

A new model for Spread Out Bragg Peak in proton therapy of uveal melanoma

In this research, in order to improve our calculations in treatment planning for proton radiotherapy of ocular melanoma, we improved our human eye phantom planning system in GEANT4 toolkit. Different analytical models have investigated the creating of Spread Out Bragg Peak (SOBP) in the tumor area. Bortfeld’s model is one of the most important analytical methods. Using convolution method, a new...

متن کامل

Damage Induction and Repair Processes in Chinese Hamster Cells and Normal Human Skin Fibroblasts Irradiated by Light Ions of Different Energies

For effective application of protons and ions in tumour radiotherapy is necessary understanding of the basic characteristics of radiobiological mechanism in individual cell. To study the cell inactivation mechanisms of various ions at different energies, damage induction and repair processes in hamster and human cell lines have been analyzed. Published survival data for Chinese hamster CHO-K1 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiation research

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2008